Side-To-Side Comparisons between Erlang and TypeScript Programs

erlangjavascripttypescript

February 1, 2024  |  5 min read

TLDR

Pattern-matching -> Higher order functions -> recursion -> terse code that feels good.

The Push

The problems in Learn You Some Erlang for great good's Functionally Solving Problems were interesting, thus the (premature) attempt in TypeScript.

Closing Thoughts

Erlang's pattern-matching and term comparison features make actual code part a lot neater. And I still have much to learn to better harness these languages.

Time in reading Learn You Some Erlang for great good has been an enjoyment to me, compare to my recent LeetCode routines in the past few weeks. While the latter pushs me to reason in an efficient way, the former allows me to revisit what I missed in Elixir, the beauty of functional programming. Erlang's syntax does take a bit time to get used to, but it is growing on me now.

Code

RPN (Reverse Polish Notation) Calculator

%% RPN calculator in Erlang
-module(calc).
-export([rpn/1, rpn_test/0]).
 
rpn(L) when is_list(L) ->
  [Res] = lists:foldl(fun rpn/2, [], string:tokens(L, " ")),
  Res.
 
rpn("+", [N1, N2 | S]) -> [N2 + N1 | S];
rpn("-", [N1, N2 | S]) -> [N2 - N1 | S];
rpn("*", [N1, N2 | S]) -> [N2 * N1 | S];
rpn("/", [N1, N2 | S]) -> [N2 / N1 | S];
rpn("^", [N1, N2 | S]) -> [math:pow(N2, N1) | S];
rpn("ln", [N | S]) -> [math:log(N) | S];
rpn("log10", [N | S]) -> [math:log10(N) | S];
 
rpn("sum", L) -> lists:sum(L);
rpn("prod", L) ->
  Res = lists:foldl(fun (Val, Acc) -> Val * Acc end, 1, L),
  [Res];
 
rpn(X, Stack) -> [read(X) | Stack].
 
read(N) ->
  case string:to_float(N) of
    {error, no_float} -> list_to_integer(N);
    {F, _} -> F
  end.
 
rpn_test() ->
  4037 = rpn("90 34 12 33 55 66 + * - + -"),
  ok.
// RPN calculator in TypeScript
interface Calculator {
  execute: (s: string) => number;
}
 
class RPN implements Calculator {
  private stack: Stack<number | string> = new Stack<number | string>();
 
  execute(s: string) {
    const elements = s.split(' ').map(this.#read);
 
    for (const element of elements) {
      if (typeof element === 'number') {
        this.stack.push(element);
      } else {
        this.#operateBy(element);
      }
    }
 
    return this.stack.pop()! as number;
  }
 
  #read(s: string) {
    const casted = Number(s);
    return isNaN(casted) ? s : casted;
  }
 
  /**
   * Only basic arith ops implemented
   */
  #operateBy(s: string): void {
    const n1 = this.stack.pop();
    const n2 = this.stack.pop();
    if (!isNumber(n1) || !isNumber(n2)) {
      console.error(
        'Unexpected values found' +
          `${isNumber(n1) ? '' : `${n1} of type ${typeof n1}`} ${isNumber(n2) ? '' : `${n2} of type ${typeof n2}`}` +
          `with operand ${s}.`,
      );
      this.stack.clear();
      return;
    }
 
    switch (s) {
      case '+':
        this.stack.push(n2 + n1);
        break;
      case '-':
        this.stack.push(n2 - n1);
        break;
      case '*':
        this.stack.push(n2 * n1);
        break;
      case '/':
        this.stack.push(n2 / n1);
        break;
      default:
        throw `Unknown operand "${s}" encountered.`;
    }
  }
}
 
function isNumber(val: unknown): val is number {
  return typeof val === 'number';
}
 
const rpn = new RPN();
console.log(rpn.execute('90 34 12 33 55 66 + * - + -'));
 
//region stack interface and impl
interface IStack<T> {
  pop: () => T | undefined;
  push: (element: T) => void;
  clear: () => void;
  elements: T[];
}
 
class Stack<T> implements IStack<T> {
  private stack: T[] = [];
 
  pop() {
    return this.stack.shift();
  }
 
  push(element: T) {
    this.stack.unshift(element);
  }
 
  clear() {
    this.stack = [];
  }
 
  get elements() {
    return this.stack;
  }
}
//endregion

Optimal Pathfinder

%% Optimal Pathfinder in Erlang
-module(road).
-compile([export_all, nowarn_export_all]).
 
main([FileName]) ->
  {ok, Bin} = file:read_file(FileName),
  Map = parse_map(Bin),
  io:format("~p~n", [optimal_path(Map)]),
  erlang:halt().
 
parse_map(Bin) when is_binary(Bin) ->
  parse_map(binary_to_list(Bin));
parse_map(Str) when is_list(Str) ->
  Values = [list_to_integer(X) || X <- string:tokens(Str, "\r\n\t ")],
  group_vals(Values, []).
 
group_vals([], Acc) ->
  lists:reverse(Acc);
group_vals([A, B, X | Rest], Acc) ->
  group_vals(Rest, [{A, B, X} | Acc]).
 
{% raw %}
optimal_path(Map) ->
  {A, B} = lists:foldl(fun shortest_step/2, {{0, []}, {0, []}}, Map),
  {_Dist, Path} = if hd(element(2, A)) =/= {x, 0} -> A;
                     hd(element(2, B)) =/= {x, 0} -> B
                  end,
  lists:reverse(Path).
 
%% actual problem solving
shortest_step({A, B, X}, {{DistA, PathA}, {DistB, PathB}}) ->
  OptA1 = {DistA + A, [{a, A} | PathA]},
  OptA2 = {DistA + B + X, [{x, X}, {b, B} | PathA]},
  OptB1 = {DistB + B, [{b, B} | PathB]},
  OptB2 = {DistB + A + X, [{x, X}, {a, A} | PathA]},
{% endraw %}
  %% see https://www.erlang.org/doc/reference_manual/expressions#term-comparisons
  %% "Tuples are ordered by size, two tuples with the same size are compared element by element."
  {erlang:min(OptA1, OptA2), erlang:min(OptB1, OptB2)}.
// Optimal Pathfinder in TypeScript
type Distance = number;
type Path = 'a' | 'b' | 'x';
type PathTuple = [Path, Distance];
type Triple = [distanceA: Distance, distanceB: Distance, distanceX: Distance];
 
function parseMap(s: string): Triple[] {
  const list = s.split(' ').map(Number);
  return groupVals(list);
}
 
function groupVals(array: number[], acc: Triple[] = []): Triple[] {
  if (array.length < 3) {
    return acc;
  }
 
  const [a, b, x, ...rest] = array;
  const triple: Triple = [a, b, x];
 
  return groupVals(rest, acc.concat([triple]));
}
 
type DistancePathsTuple = [distance: Distance, path: Array<PathTuple>];
type AccDistanceFromAAndB = [pathFromA: DistancePathsTuple, pathFromB: DistancePathsTuple];
 
function getOptimalPath(map: Triple[]): PathTuple[] {
  const [a, b] =
    map.reduce(getShortestPathsFromAAndB, [[0, []], [0, []]]);
 
  const [lastPathFromA] = a[1].slice(-1);
  return lastPathFromA[0] === `x` && lastPathFromA[1] === 0 ? a[1] : b[1];
}
 
function getShortestPathsFromAAndB(
    [[distA, pathA], [distB, pathB]]: AccDistanceFromAAndB,
    [a, b, x]: Triple
  ) {
  const [optA1, optA2, optB1, optB2]: DistancePathsTuple[] =
    [
      [distA + a, pathA.concat([['a', a]])],
      [distA + b + x, pathA.concat([['b', b], ['x', x]])],
      [distB + b, pathB.concat([['b', b]])],
      [distB + a + x, pathB.concat([['a', a], ['x', x]])]
    ];
 
  const getShorterPath = (path1: DistancePathsTuple, path2: DistancePathsTuple) => {
    return (
      (path1[0] < path2[0]) ||
      (path1[0] === path2[0] && path1[1].length < path2[1].length)
    ) ? path1 : path2;
 
  return [getShorterPath(optA1, optA2), getShorterPath(optB1, optB2)] as AccDistanceFromAAndB;
}
 
const mapString = '50 10 30 5 90 20 40 2 25 10 8 0';
console.log(getOptimalPath(parseMap(mapString)))

Refs